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The problem of convergence of interpolating polynomials of the type

(n) n

In(x,n = ~- + L(a~n) cos kt + b~n) sin kt)
2 ~-1

with the interpolating points tln
, = 2rrj/(2n + 1) has been studied by A. Zygmund,

who considered the partial sums of the interpolating polynomials In..(x,f). On
the other hand, R. Taberski studied essentially the same problem, by considering
the (C, "') summability of In.n(x,f). Here a generalization of the results of Taberski
is made by using a triangular matrix summability method.

I. INTRODUCTION

Let the real function J(t) be integrable in the Riemann sense on [0,271']
and periodic with period 271' on (- 00, (0).

Consider the triginometric polynomials

(I)

with interpolating points

tfn) = 271'i/(2n + 1); j= 0, ±1,... , ±n. (2)

The problem of convergence of the interpolating polynomials (1) has been
discussed by Zygmund [5], while (C, ex) summability of the derivatives of (1)
has been discussed by Taberski [4], for the cases ex > 1, ex = 1 and°< ex < 1
separately. The object here is to unify the three cases and extend the results
to the case of a matrix method D = (dn •k ).
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Following Zygmund [5], we write the partial sum of the interpolating
trigonometric polynomial as

l"jx,j) = ~ f" j(t)Dv(t-x)dc/>n(t)
JI '---11

= J_ f"!" jet) Dv(t - x) dc/>it),
7T .. ,l'-1"i

where

1 , v sin(v + l)t
D,,(t) = -2 -i L cos kl = ~2~.~l~

k~l SIll 2 1

and c/>it) is a step function equal to 217jj(2n + 1) for

t E [t(n) t(1/»·
}-l') ,

We write

.i = 0, ±l,....

for a function defined on (a, b] and

Now if g is of period 217, then

is independent of CY.

2. MATRIX TRANSFORM AND NOTATIONS

(3)

(4)

Let D ~ (dn •k ) be a regular triangular sequence-to-sequence transfor­
mation. Write Kn(t) for the kernel,

K (t) = f d sin(~ + 1)t .
n k~O n.k SIll it (5)

(6)

Suppose that D is such that for large v, uniformly in n ~ v, 0 < c :S:; I,
217j(2v + 1) < Tj < 0 :S:; 17, we have

I K: l(c + p) 2n2~ 1I= O{nvR(vTj)] ,
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where the sum in the last expression is taken over 7J < (c +p)(27T/(2n+ 1» ~ O.
Furthermore, suppose R(n) is positive, decreasing, and such that

ret) R(n)dn
"I

converges. R(n) may be considered as a remainder term.

3. PROOF OF THEOREM.

(7)

THEOREM. Suppose J(t) is Riemann integrable on (-7T, 7T), absolutely
continuous for all x E [a, b) C (--7T, 7T) and such that

f+h ,j'(t) - j'(x) I dt = o(h),
x

(8)

then 2:~~o d•.kI~,k(x,j) --+ j'(x) as v --+ 00, uniformly in n for n ?: v, i.e., the
sequence of differentiated interpolation poylnomials is D-approximable at x,
to j'(x), where D is defined in Section 2.

Proof Let

FAt) = l(t) - J(x) - j'(x) sin(t - x)

and

<P(t) = ri Fx'(t)j dt = 0(1 t - x I).
,r

Then it is enough to show that

(9)

[, F,,(t) Kv'(t - x) d4>n(t) --+ 0, as v --+ 00 (10)

uniformly in n. Here, Kv' denotes differentiation with respect to the argument.
In view of (4) and the absolute continuity of J(I), in (x -- 8, x + 0) for

osmall enough, the contribution of the integrals

to I~.vCx,1)

tend to zero as v -* 00 uniformly in n ?: v, (see Zygmund [5]). Thus we can
consider the case of the integral over [x - 0, x + 0] only.

We take the integral over [x, x + 8] only, since the integral over [x - 0, xl
follows similarly.
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We know that

d d j v sin(k + t)t I
Kv'(t) = dt (Klt)) = dt ,k~O dv • k sin~t \

= 0 \ ~ (k ,1- 1)2 d k ! I
IA~O' v, , \

= 0 Iv2 ±I dv •k I!
I I,~O \

= O(v2
)

since D is regular.
The jumps of c/>n(t) in the interval (x, x + 8) occur at intervals of

2rr((2n + 1); let them occur at

t = x + (c + p)(2rrj(2n + 1)),

and 0 < c ~ l.
Let us first consider

(p = 0, 1,2,...)

I
"'+<21T/(2V+1)

Fit) Kv'(t -- x) dc/>it).
'"

c/>n(t) is a step function in this interval and is bounded by O(ljn). Thus we
have the following: The number of jumps is O(njv), the magnitude of each
jump of c/>n(t) is O(l(n) and we have, uniformly, Kv'(t - x) = O(v2). Also,
by (9), we have, uniformly in the range considered,

Fit) = o(ljv).

Hence

5
",+(21T/(2v+1»

Fit) Kv'(t - x) dc/>n(t) = 0(1).
x

Now consider

Let us write

Then

An,lx) = 2n2~ I L F", (x + (c + p) 2n
2-Fd Kv' l(c +- p) 2n2~ d

2rr I 2,rr, I, ("'HCC- P)(21T!(2n+l»

2n + 1 L Kv' l(c + p) 2n! 1 (.c Fx'(t) dt,
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where the last two summations are taken over 27T((2v + 1) < (c + p) X

27T/(2n + 1) ~ 0, and thus

An.v(x) ~ 2}~ 1 {"H F,,'(t) LKy' l(c + p) 2n2~ 1 t,
where the sum is over max(t - x, 27T((2v + 1» < (c + p)(27T((2n + 1» ~ o.
Thus

1
1 (27TV) f"+(2,, /(2v+1») I

An.v(X) = 0 nR 2v + 1 nv " IF,,'(t)/ dt

1
1 f,,+5 I+ 0 - nv IF,,'(t)1 R(v(t - x» dt
n "+ (2" / (2v+1»

(11)

by (6).
Since R(v) is decreasing for all v, R(21TV((2v + 1» ~ R(7T) = constant;

thus it follows from (9) that the first term on the right side of (11) is

O{vO(1) 0(27T((2v + I»} = 0(1).

We now consider the second term in (11) and on integrating by parts,

[
"+5

V IF,,'(t)[ R(v(t - x» dt
•X+(2,,/(2v+1»

f"+5
= v R(v(t - x) difJ(t)

"+ (2" / (2v+1»

( 27TV) ( 27T)= vR(vo) ifJ(o) - vR 2v + 1 ifJ x + 2v + 1

f
,,+5

- v ifJ(t) dtR(v(t - x».
"+ (2" / (2v+1»

(12)

Since R(x) is decreasing for all x, the assumption that f~ R(x) dx < 00

implies that R(vo) = o(1/v), so that the first term in (12) is 0(1). Also, since
R(27TV((2v + 1» = 0(1), the second term in (12) is 0(1).

Now given any E > 0, there is an 7), such

I ifJ(t)I < E(t - x)

for t - x < 7).

Also, there is some constant A, such that

ifJ(t) ~ A(t - x)

in (x, x + 0). Putting vet - x) = u, we observe that the third term in (12)
does not exceed

E fV u I dR(u)! + A tv u I dR(u)[.
2"v/(2v+1) nv
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The result will follow if we prove that

Ie< U i dR(u)i < OCJ.
1

However, since R(n) = o(lfn), then using integration by parts, we have

JOC u I dR(u) I < OCJ
1

and thus (10) is true and hence the theorem is proved.

Note. It may be remarked that in the case when D is (C, ex), the hypothesis
of Taberski's Theorem 2 [4], is satisfied with the remainder R(u) given by
u-1-",. Thus his result is a particular case of the above theorem.
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